The rapid emergence of antifungal
HomeHome > Blog > The rapid emergence of antifungal

The rapid emergence of antifungal

Aug 16, 2023

Nature Reviews Microbiology (2023)Cite this article

8 Accesses

5 Altmetric

Metrics details

During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.

This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Rigling, D. & Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant Pathol. 19, 7–20 (2018).

Article CAS PubMed Google Scholar

Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G. & Staver, C. P. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 9, 1468 (2018).

Article PubMed PubMed Central Google Scholar

Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

Article CAS PubMed Google Scholar

Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19, 196–210 (2021).

Article CAS PubMed Google Scholar

Martin-Urdiroz, M., Oses-Ruiz, M., Ryder, L. S. & Talbot, N. J. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 90, 61–68 (2016).

Article CAS PubMed Google Scholar

Singh, R. P. et al. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105, 872–884 (2015).

Article PubMed Google Scholar

Schorling, S. R., Kortinga, H. C., Froschb, M. & Mühlschlegel, F. A. The role of Candida dubliniensis in oral candidiasis in human immunodeficiency virus-infected individuals. Crit. Rev. Microbiol. 26, 59–68 (2000).

Article CAS PubMed Google Scholar

Maziarz, E. K. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. N. Am. 30, 179–206 (2016).

Article Google Scholar

Dellière, S., Gits-Muselli, M., Bretagne, S. & Alanio, A. Outbreak-causing fungi: Pneumocystis jirovecii. Mycopathologia 185, 783–800 (2020).

PubMed Google Scholar

Satoh, K. et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 53, 41–44 (2009).

Article CAS PubMed Google Scholar

Kano, R. et al. Trichophyton indotineae sp. nov.: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 185, 947–958 (2020).

Article CAS PubMed Google Scholar

Snelders, E., Melchers, W. J. & Verweij, P. E. Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis? Future Microbiol. 6, 335–347 (2011).

Article CAS PubMed Google Scholar

Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e013970-19 (2019).

Article Google Scholar

Casadevall, A., Kontoyiannis, D. P. & Robert, V. Environmental Candida auris and the global warming emergence hypothesis. mBio 12, e00360-21 (2021).

Article PubMed PubMed Central Google Scholar

Nnadi, N. E. & Carter, D. A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 17, e1009503 (2021).

Article CAS PubMed PubMed Central Google Scholar

Gadre, A., Enbiale, W., Andersen, L. & Coate, S. The effects of climate change on fungal diseases with cutaneous manifestations: a report from the International Society of Dermatology Climate Change Committee. J. Clim. Change Health 4, 100156 (2022).

Article Google Scholar

Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

Article CAS PubMed Google Scholar

Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).

Article PubMed Google Scholar

Meena, M. et al. Multifarious responses of forest soil microbial community toward climate change. Microb. Ecol. 86, 49–84 (2022).

Article PubMed Google Scholar

Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Ecology and evolution of the human microbiota: fire, farming and antibiotics. Genes 6, 841–857 (2015).

Article CAS PubMed PubMed Central Google Scholar

Huang, X. et al. Skin metagenomic sequence analysis of early Candida auris outbreaks in U.S. nursing homes. mSphere 6, e0028721 (2021).

Article PubMed Google Scholar

Proctor, D. M. et al. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat. Med. 27, 1401–1409 (2021).

Article CAS PubMed PubMed Central Google Scholar

Chien, A. L. et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 155, 425–434 (2019).

Article PubMed PubMed Central Google Scholar

Xue, P., Liu, X., Zhao, L., Zhang, J. & He, Z. Integrating high-throughput sequencing and metabolomics to investigate the stereoselective responses of soil microorganisms to chiral fungicide cis-epoxiconazole. Chemosphere 300, 134198 (2022).

Article CAS PubMed Google Scholar

Han, L., Kong, X., Xu, M. & Nie, J. Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. Environ. Pollut. 287, 117660 (2021).

Article CAS PubMed Google Scholar

Zhang, H. et al. Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. J. Hazard. Mater. 405, 124208 (2021).

Article CAS PubMed Google Scholar

Baćmaga, M., Wyszkowska, J., Borowik, A. & Kucharski, J. Effects of tebuconazole application on soil microbiota and enzymes. Molecules 27, 7501 (2022).

Article PubMed PubMed Central Google Scholar

Lee, W. G. et al. First three reported cases of nosocomial fungemia caused by Candida auris. J. Clin. Microbiol. 49, 3139–3142 (2011).

Article CAS PubMed PubMed Central Google Scholar

Chowdhary, A. et al. New clonal strain of Candida auris, Delhi, India. Emerg. Infect. Dis. 19, 1670–1673 (2013).

Article CAS PubMed PubMed Central Google Scholar

Magobo, R. E., Corcoran, C., Seetharam, S. & Govender, N. P. Candida auris-associated candidemia, South Africa. Emerg. Infect. Dis. 20, 1250–1251 (2014).

Article PubMed PubMed Central Google Scholar

Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

Article CAS PubMed Google Scholar

Rhodes, J. & Fisher, M. C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 52, 84–89 (2019).

Article PubMed Google Scholar

Jung, J. et al. Candida auris colonization or infection of the ear: a single-center study in South Korea from 2016 to 2018. Med. Mycol. 58, 124–127 (2020).

Article PubMed Google Scholar

Desnos-Ollivier, M., Fekkar, A. & Bretagne, S. Earliest case of Candida auris infection imported in 2007 in Europe from India prior to the 2009 description in Japan. J. Mycol. Med. 31, 101139 (2021).

Article PubMed Google Scholar

Iguchi, S. et al. Candida auris: a pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. J. Infect. Chemother. 25, 743–749 (2019).

Article CAS PubMed Google Scholar

Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

Article PubMed PubMed Central Google Scholar

Chow, N. A. et al. Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 25, 1780–1781 (2019).

Article PubMed PubMed Central Google Scholar

Chowdhary, A., Sharma, C. & Meis, J. F. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13, e1006290 (2017).

Article PubMed PubMed Central Google Scholar

Hallen-Adams, H. E. & Suhr, M. J. Fungi in the healthy human gastrointestinal tract. Virulence 8, 352–358 (2017).

Article CAS PubMed Google Scholar

Kühbacher, A., Burger-Kentischer, A. & Rupp, S. Interaction of Candida species with the skin. Microorganisms 5, 32 (2017).

Article PubMed PubMed Central Google Scholar

Schelenz, S. et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control 5, 35 (2016).

Article PubMed PubMed Central Google Scholar

Ruiz-Gaitan, A. et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 61, 498–505 (2018).

Article CAS PubMed Google Scholar

Biswal, M. et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J. Hosp. Infect. 97, 363–370 (2017).

Article CAS PubMed Google Scholar

Sexton, D. J. et al. Positive correlation between Candida auris skin-colonization burden and environmental contamination at a ventilator-capable skilled nursing facility in Chicago. Clin. Infect. Dis. 73, 1142–1148 (2021).

Article PubMed PubMed Central Google Scholar

Adams, E. et al. Candida auris in healthcare facilities, New York, USA, 2013–2017. Emerg. Infect. Dis. 24, 1816–1824 (2018).

Article PubMed PubMed Central Google Scholar

Chow, N. A. et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect. Dis. 18, 1377–1384 (2018).

Article PubMed PubMed Central Google Scholar

Lyman, M. et al. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 176, 489–495 (2023).

Article PubMed Google Scholar

Jackson, B. R. et al. On the origins of a species: what might explain the rise of Candida auris. J. Fungi 5, 58 (2019).

Article Google Scholar

Abastabar, M. et al. Candida auris otomycosis in Iran and review of recent literature. Mycoses 62, 101–105 (2019).

Article PubMed Google Scholar

Arora, P. et al. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. mBio https://doi.org/10.1128/mBio.03181-20 (2021).

Article PubMed PubMed Central Google Scholar

Yadav, A. et al. Candida auris on apples: diversity and clinical significance. mBio 13, e0051822 (2022).

Article PubMed Google Scholar

Escandón, P. Novel environmental niches for Candida auris: isolation from a coastal habitat in Colombia. J. Fungi 8, 748 (2022).

Article Google Scholar

Chakrabarti, A. & Singh, S. Multidrug-resistant Candida auris: an epidemiological review. Expert Rev. Anti Infect. Ther. 18, 551–562 (2020).

Article CAS PubMed Google Scholar

Chowdhary, A., Voss, A. & Meis, J. F. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J. Hosp. Infect. 94, 209–212 (2016).

Article CAS PubMed Google Scholar

Toda, M. et al. Population-based active surveillance for culture-confirmed candidemia — four sites, United States, 2012–2016. MMWR Surveill. Summ. 68, 1–15 (2019).

Article PubMed PubMed Central Google Scholar

Kean, R. et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 3, e00334-18 (2018).

Article PubMed PubMed Central Google Scholar

Singh, R., Kaur, M., Chakrabarti, A., Shankarnarayan, S. A. & Rudramurthy, S. M. Biofilm formation by Candida auris isolated from colonising sites and candidemia cases. Mycoses 62, 706–709 (2019).

Article CAS PubMed Google Scholar

Horton, M. V. et al. Candida auris forms high-burden biofilms in skin niche conditions and on porcine skin. mSphere https://doi.org/10.1128/mSphere.00910-19 (2020).

Article PubMed PubMed Central Google Scholar

Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).

Article CAS PubMed PubMed Central Google Scholar

Fakhim, H. et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses 61, 377–382 (2018).

Article PubMed Google Scholar

Yue, H. et al. Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg. Microbes Infect. 7, 188 (2018).

Article PubMed PubMed Central Google Scholar

Johnson, C. J., Davis, J. M., Huttenlocher, A., Kernien, J. F. & Nett, J. E. Emerging fungal pathogen Candida auris evades neutrophil attack. mBio 9, e01403-18 (2018).

Article PubMed PubMed Central Google Scholar

Horton, M. V. et al. Candida auris cell wall mannosylation contributes to neutrophil evasion through pathways divergent from Candida albicans and Candida glabrata. mSphere 6, e0040621 (2021).

Article PubMed Google Scholar

Weerasinghe, H. et al. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep. 42, 112522 (2023).

Article CAS PubMed Google Scholar

Lamoth, F., Lockhart, S. R., Berkow, E. L. & Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 73, i4–i13 (2018).

Article CAS PubMed Google Scholar

Chowdhary, A. et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 73, 891–899 (2018).

Article CAS PubMed Google Scholar

Arendrup, M. C., Prakash, A., Meletiadis, J., Sharma, C. & Chowdhary, A. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob. Agents Chemother. 61, e00485-17 (2017).

Article PubMed PubMed Central Google Scholar

Rybak, J. M. et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 11, e00365-20 (2020).

Article PubMed PubMed Central Google Scholar

Ben-Ami, R. et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg. Infect. Dis. 23, 195–203 (2017).

Article CAS PubMed PubMed Central Google Scholar

Lyman, M. et al. Notes from the field: transmission of pan-resistant and echinocandin-resistant Candida auris in health care facilities—Texas and the District of Columbia, January–April 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1022–1023 (2021).

Article CAS PubMed PubMed Central Google Scholar

Berkow, E. L. & Lockhart, S. R. Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagn. Microbiol. Infect. Dis. 90, 196–197 (2018).

Article CAS PubMed Google Scholar

Lepak, A. J., Zhao, M., Berkow, E. L., Lockhart, S. R. & Andes, D. R. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob. Agents Chemother. 61, e00791-17 (2017).

Article PubMed PubMed Central Google Scholar

Rybak, J. M. et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 28, 838–843 (2022).

Article CAS PubMed Google Scholar

Asner, S. A., Giulieri, S., Diezi, M., Marchetti, O. & Sanglard, D. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob. Agents Chemother. 59, 7715–7722 (2015).

Article CAS PubMed PubMed Central Google Scholar

Ostrowsky, B. et al. Candida auris isolates resistant to three classes of antifungal medications—New York, 2019. MMWR Morb. Mortal. Wkly Rep. 69, 6–9 (2020).

Article PubMed PubMed Central Google Scholar

Alastruey-Izquierdo, A. et al. GEMICOMED/GEIRAS-SEIMC recommendations for the management of Candida auris infection and colonization [Spanish]. Rev. Iberoam. Micol. 36, 109–114 (2019).

Article PubMed Google Scholar

Govender, N. P. et al. Federation of Infectious Diseases Societies of Southern Africa guideline: recommendations for the detection, management and prevention of healthcare-associated Candida auris colonisation and disease in South Africa. S. Afr. J. Infect. Dis. 34, 163 (2019).

PubMed PubMed Central Google Scholar

Ong, C. W. et al. Diagnosis, management and prevention of Candida auris in hospitals: position statement of the Australasian Society for Infectious Diseases. Intern. Med. J. 49, 1229–1243 (2019).

Article PubMed Google Scholar

Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, e1–e50 (2016).

Article PubMed Google Scholar

Berkow, E. L. & Lockhart, S. R. Activity of novel antifungal compound APX001A against a large collection of Candida auris. J. Antimicrob. Chemother. 73, 3060–3062 (2018).

Article CAS PubMed Google Scholar

Berkow, E. L., Angulo, D. & Lockhart, S. R. In vitro activity of a novel glucan synthase inhibitor, SCY-078, against clinical isolates of Candida auris. Antimicrob. Agents Chemother. 61, e00435-17 (2017).

Article PubMed PubMed Central Google Scholar

Benedict, K., Jackson, B. R., Chiller, T. & Beer, K. D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 68, 1791–1797 (2019).

Article PubMed Google Scholar

Gold, J. A. W. et al. Increased deaths from fungal infections during the COVID-19 pandemic—National Vital Statistics System, United States, January 2020–December 2021. Clin. Infect. Dis. 76, e255–e262 (2022).

Article Google Scholar

Vallabhaneni, S., Benedict, K., Derado, G. & Mody, R. K. Trends in hospitalizations related to invasive aspergillosis and mucormycosis in the United States, 2000–2013. Open Forum Infect. Dis. 4, ofw268 (2017).

Article PubMed PubMed Central Google Scholar

Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 3, 57 (2017).

Article Google Scholar

Denning, D. W., Pleuvry, A. & Cole, D. C. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med. Mycol. 51, 361–370 (2013).

Article PubMed Google Scholar

Patterson, T. F. et al. Executive summary: practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 63, 433–442 (2016).

Article PubMed PubMed Central Google Scholar

Bueid, A. et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 65, 2116–2118 (2010).

Article CAS PubMed Google Scholar

Verweij, P. E., Snelders, E., Kema, G. H., Mellado, E. & Melchers, W. J. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use. Lancet Infect. Dis. 9, 789–795 (2009).

Article CAS PubMed Google Scholar

Howard, S. J. et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 15, 1068–1076 (2009).

Article CAS PubMed PubMed Central Google Scholar

Bradley, K. et al. Fatal fungicide-associated triazole-resistant Aspergillus fumigatus infection, Pennsylvania, USA. Emerg. Infect. Dis. 28, 1904–1905 (2022).

Article PubMed PubMed Central Google Scholar

Verweij, P. E., Chowdhary, A., Melchers, W. J. & Meis, J. F. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 62, 362–368 (2016).

Article CAS PubMed Google Scholar

Resendiz Sharpe, A. et al. Triazole resistance surveillance in Aspergillus fumigatus. Med. Mycol. 56, 83–92 (2018).

Article PubMed Google Scholar

Burks, C., Darby, A., Gómez Londoño, L., Momany, M. & Brewer, M. T. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog. 17, e1009711 (2021).

Article CAS PubMed PubMed Central Google Scholar

van der Linden, J. W., Arendrup, M. C., Melchers, W. J. & Verweij, P. E. Azole resistance of Aspergillus fumigatus in immunocompromised patients with invasive aspergillosis. Emerg. Infect. Dis. 22, 158–159 (2016).

Article PubMed PubMed Central Google Scholar

Rosowski, E. E. et al. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog. 14, e1007229 (2018).

Article PubMed PubMed Central Google Scholar

Earle, K. et al. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 14, 2172264 (2023).

Article PubMed Google Scholar

Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140-18 (2019).

Article PubMed PubMed Central Google Scholar

Mortensen, K. L. et al. A prospective survey of Aspergillus spp. in respiratory tract samples: prevalence, clinical impact and antifungal susceptibility. Eur. J. Clin. Microbiol. Infect. Dis. 30, 1355–1363 (2011).

Article CAS PubMed Google Scholar

Pappas, P. G. et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin. Infect. Dis. 50, 1101–1111 (2010).

Article PubMed Google Scholar

Kontoyiannis, D. P. et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin. Infect. Dis. 50, 1091–1100 (2010).

Article PubMed Google Scholar

Sehgal, I. S., Muthu, V. & Agarwal, R. Aspergillus infection is an important complication of post-TB bronchiectasis. Int. J. Tuberc. Lung Dis. 27, 89a–89(1) (2023).

Article CAS PubMed Google Scholar

Warris, A. Immunopathology of Aspergillus infections in children with chronic granulomatous disease and cystic fibrosis. Pediatr. Infect. Dis. J. 38, e96–e98 (2019).

Article PubMed PubMed Central Google Scholar

Prattes, J. et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—a multinational observational study by the European Confederation of Medical Mycology. Clin. Microbiol. Infect. 28, 580–587 (2022).

Article CAS PubMed Google Scholar

Schauwvlieghe, A. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir. Med. 6, 782–792 (2018).

Article PubMed Google Scholar

Lestrade, P. P. A., Meis, J. F., Melchers, W. J. G. & Verweij, P. E. Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin. Microbiol. Infect. 25, 799–806 (2019).

Article CAS PubMed Google Scholar

Lestrade, P. P. et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin. Infect. Dis. 68, 1463–1471 (2019).

Article CAS PubMed Google Scholar

Chong, G. M. et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 71, 3528–3535 (2016).

Article CAS PubMed Google Scholar

Rhodes, J. et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 7, 663–674 (2022).

Article CAS PubMed PubMed Central Google Scholar

Gonzalez-Jimenez, I. et al. Multiresistance to nonazole fungicides in Aspergillus fumigatus TR34/L98H azole-resistant isolates. Antimicrob. Agents Chemother. 65, e0064221 (2021).

Article CAS PubMed Google Scholar

Kang, S. E. et al. Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 12, jkab427 (2022).

Article CAS PubMed Google Scholar

Mellado, E. et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 51, 1897–1904 (2007).

Article CAS PubMed PubMed Central Google Scholar

van der Linden, J. W. et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 57, 513–520 (2013).

Article PubMed Google Scholar

Chowdhary, A., Kathuria, S., Xu, J. & Meis, J. F. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 9, e1003633 (2013).

Article PubMed PubMed Central Google Scholar

Lestrade, P. P. A. et al. Paradoxal trends in azole-resistant Aspergillus fumigatus in a national multicenter surveillance program, the Netherlands, 2013–2018. Emerg. Infect. Dis. 26, 1447–1455 (2020).

Article CAS PubMed PubMed Central Google Scholar

Snelders, E. et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 5, e219 (2008).

Article PubMed PubMed Central Google Scholar

Paul, S., Verweij, P. E., Melchers, W. J. G. & Moye-Rowley, W. S. Differential functions of individual transcription factor binding sites in the tandem repeats found in clinically relevant cyp51A promoters in Aspergillus fumigatus. mBio 13, e0070222 (2022).

Article PubMed Google Scholar

Riat, A., Plojoux, J., Gindro, K., Schrenzel, J. & Sanglard, D. Azole resistance of environmental and clinical Aspergillus fumigatus isolates from Switzerland. Antimicrob. Agents Chemother. 62, e02088-17 (2018).

Article PubMed PubMed Central Google Scholar

Sharma, C., Hagen, F., Moroti, R., Meis, J. F. & Chowdhary, A. Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: is it de novo or environmentally acquired? J. Glob. Antimicrob. Resist. 3, 69–74 (2015).

Article CAS PubMed Google Scholar

Bader, O. et al. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob. Agents Chemother. 59, 4356–4359 (2015).

Article CAS PubMed PubMed Central Google Scholar

Zhang, J. et al. The medical triazole voriconazole can select for tandem repeat variations in azole-resistant Aspergillus fumigatus harboring TR34/L98H via asexual reproduction. J. Fungi 6, 277 (2020).

Article CAS Google Scholar

Zhang, J. et al. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. mBio 8, e00791-17 (2017).

Article PubMed PubMed Central Google Scholar

Satish, S. et al. Stress-induced changes in the lipid microenvironment of β-(1,3)-d-glucan synthase cause clinically important echinocandin resistance in Aspergillus fumigatus. mBio 10, e00779-19 (2019).

Article PubMed PubMed Central Google Scholar

Fakhim, H. et al. Trends in the prevalence of amphotericin B-resistance (AmBR) among clinical isolates of Aspergillus species. J. Mycol. Med. 32, 101310 (2022).

Article PubMed Google Scholar

Etienne, K. A. et al. Genomic diversity of azole-resistant Aspergillus fumigatus in the United States. mBio 12, e0180321 (2021).

Article PubMed Google Scholar

Toda, M., Beer, K. D., Kuivila, K. M., Chiller, T. M. & Jackson, B. R. Trends in agricultural triazole fungicide use in the United States, 1992–2016 and possible implications for antifungal-resistant fungi in human disease. Environ. Health Perspect. 129, 55001 (2021).

Article CAS PubMed Google Scholar

Dunne, K., Hagen, F., Pomeroy, N., Meis, J. F. & Rogers, T. R. Intercountry transfer of triazole-resistant Aspergillus fumigatus on plant bulbs. Clin. Infect. Dis. 65, 147–149 (2017).

Article PubMed Google Scholar

Howard, S. J. & Arendrup, M. C. Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med. Mycol. 49, S90–S95 (2011).

Article CAS PubMed Google Scholar

Alvarez-Moreno, C. et al. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci. Rep. 7, 45631 (2017).

Article CAS PubMed PubMed Central Google Scholar

Verweij, P. E. et al. Dual use of antifungals in medicine and agriculture: how do we help prevent resistance developing in human pathogens? Drug Resist. Updat. 65, 100885 (2022).

Article CAS PubMed Google Scholar

Verweij, P. E. et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist. Updat. 21–22, 30–40 (2015).

Article PubMed Google Scholar

Shaw, K. J. & Ibrahim, A. S. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi 6, 239 (2020).

Article CAS Google Scholar

Buil, J. B. et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J. Antimicrob. Chemother. 72, 2548–2552 (2017).

Article CAS PubMed Google Scholar

Pfaller, M. A. et al. In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Aspergillus spp. determined by CLSI and EUCAST broth microdilution methods. Antimicrob. Agents Chemother. 55, 5155–5158 (2011).

Article CAS PubMed PubMed Central Google Scholar

Rinaldi, M. G. Dermatophytosis: epidemiological and microbiological update. J. Am. Acad. Dermatol. 43, S120–S124 (2000).

Article CAS PubMed Google Scholar

Havlickova, B., Czaika, V. A. & Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 51, 2–15 (2008).

Article PubMed Google Scholar

Leung, A. K., Lam, J. M., Leong, K. F. & Hon, K. L. Tinea corporis: an updated review. Drugs Context https://doi.org/10.7573/dic.2020-5-6 (2020).

Article Google Scholar

Urban, K. et al. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: a cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD Int. 2, 22–27 (2021).

Article PubMed Google Scholar

Ebert, A. et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: a multicentre study. Mycoses 63, 717–728 (2020).

Article CAS PubMed Google Scholar

Dogra, S. & Uprety, S. The menace of chronic and recurrent dermatophytosis in India: is the problem deeper than we perceive? Indian Dermatol. Online J. 7, 73–76 (2016).

Article PubMed PubMed Central Google Scholar

Tang, C. et al. Taxonomy of the Trichophyton mentagrophytes/T. interdigitale species complex harboring the highly virulent, multiresistant genotype T. indotineae. Mycopathologia 186, 315–326 (2021).

Article CAS PubMed PubMed Central Google Scholar

Khurana, A. et al. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob. Agents Chemother. 62, e01038-18 (2018).

Article PubMed PubMed Central Google Scholar

Astvad, K. M. T. et al. Increasing terbinafine resistance in Danish Trichophyton isolates 2019–2020. J. Fungi 8, 150 (2022).

Article CAS Google Scholar

Brasch, J. et al. “Indian” strains of Trichophyton mentagrophytes with reduced itraconazole susceptibility in Germany. J. Dtsch Dermatol. Ges. 19, 1723–1727 (2021).

PubMed Google Scholar

Jabet, A. et al. Extensive dermatophytosis caused by terbinafine-resistant Trichophyton indotineae, France. Emerg. Infect. Dis. 28, 229–233 (2022).

Article CAS PubMed PubMed Central Google Scholar

Klinger, M., Theiler, M. & Bosshard, P. P. Epidemiological and clinical aspects of Trichophyton mentagrophytes/Trichophyton interdigitale infections in the Zurich area: a retrospective study using genotyping. J. Eur. Acad. Dermatol. Venereol. 35, 1017–1025 (2021).

Article CAS PubMed Google Scholar

Posso-De Los Rios, C. J., Tadros, E., Summerbell, R. C. & Scott, J. A. Terbinafine resistant Trichophyton indotineae isolated in patients with superficial dermatophyte infection in Canadian patients. J. Cutan. Med. Surg. 26, 371–376 (2022).

Article CAS PubMed Google Scholar

Dellière, S. et al. Emergence of difficult-to-treat tinea corporis caused by Trichophyton mentagrophytes complex isolates, Paris, France. Emerg. Infect. Dis. 28, 224–228 (2022).

Article PubMed PubMed Central Google Scholar

Sacheli, R. et al. Belgian National Survey on tinea capitis: epidemiological considerations and highlight of terbinafine-resistant T. mentagrophytes with a mutation on SQLE gene. J. Fungi 6, 195 (2020).

Article CAS Google Scholar

Saunte, D. M. L. et al. Emerging antifungal treatment failure of dermatophytosis in Europe: take care or it may become endemic. J. Eur. Acad. Dermatol. Venereol. 35, 1582–1586 (2021).

Article CAS PubMed Google Scholar

Siopi, M., Efstathiou, I., Theodoropoulos, K., Pournaras, S. & Meletiadis, J. Molecular epidemiology and antifungal susceptibility of Trichophyton isolates in Greece: emergence of terbinafine-resistant Trichophyton mentagrophytes type VIII locally and globally. J. Fungi 7, 419 (2021).

Article CAS Google Scholar

Fattahi, A. et al. Multidrug-resistant Trichophyton mentagrophytes genotype VIII in an Iranian family with generalized dermatophytosis: report of four cases and review of literature. Int. J. Dermatol. 60, 686–692 (2021).

Article CAS PubMed Google Scholar

Uhrlaß, S. et al. Trichophyton indotineae—an emerging pathogen causing recalcitrant dermatophytoses in India and worldwide—a multidimensional perspective. J. Fungi 8, 757 (2022).

Article Google Scholar

Ngo, T. M. C. et al. First detection of Trichophyton indotineae causing tinea corporis in central Vietnam. Med. Mycol. Case Rep. 36, 37–41 (2022).

Article PubMed PubMed Central Google Scholar

Bortoluzzi, P. et al. Report of terbinafine resistant Trichophyton spp. in Italy: clinical presentations, molecular identification, antifungal susceptibility testing and mutations in the squalene epoxidase gene. Mycoses 66, 680–687 (2023).

Article CAS PubMed Google Scholar

Caplan, A. S. et al. Notes from the field: first reported U.S. cases of tinea caused by Trichophyton indotineae—New York City, December 2021–March 2023. MMWR Morb. Mortal. Wkly Rep. 72, 536–537 (2023).

Article PubMed PubMed Central Google Scholar

Jia, S. et al. The epidemic of the multiresistant dermatophyte Trichophyton indotineae has reached China. Front. Immunol. 13, 1113065 (2022).

Article CAS PubMed Google Scholar

Kumar, M. et al. Molecular epidemiology of Trichophyton infections among canines from Northern India. J. Mycol. Med. 33, 101352 (2022).

Article PubMed Google Scholar

Achterman, R. R. & White, T. C. Dermatophyte virulence factors: identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 2012, 358305 (2012).

Article PubMed Google Scholar

Celestrino, G. A., Verrinder Veasey, J., Benard, G. & Sousa, M. G. T. Host immune responses in dermatophytes infection. Mycoses 64, 477–483 (2021).

Article PubMed Google Scholar

Gupta, A. K., Venkataraman, M., Hall, D. C., Cooper, E. A. & Summerbell, R. C. The emergence of Trichophyton indotineae: implications for clinical practice. Int. J. Dermatol. 62, 857–861 (2022).

Article PubMed Google Scholar

Verma, S. B. & Vasani, R. Male genital dermatophytosis—clinical features and the effects of the misuse of topical steroids and steroid combinations—an alarming problem in India. Mycoses 59, 606–614 (2016).

Article PubMed Google Scholar

Sardana, K., Gupta, A. & Mathachan, S. R. Immunopathogenesis of dermatophytoses and factors leading to recalcitrant infections. Indian Dermatol. Online J. 12, 389–399 (2021).

Article PubMed PubMed Central Google Scholar

Kumar, P. et al. Whole genome sequences of two Trichophyton indotineae clinical isolates from India emerging as threats during therapeutic treatment of dermatophytosis. 3 Biotech 11, 402 (2021).

Article PubMed PubMed Central Google Scholar

Kong, X. et al. Antifungal susceptibility and mutations in the squalene epoxidase gene in dermatophytes of the Trichophyton mentagrophytes species complex. Antimicrob. Agents Chemother. 65, e0005621 (2021).

Article PubMed Google Scholar

Singh, A. et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 61, 477–484 (2018).

Article CAS PubMed Google Scholar

Burmester, A., Hipler, U. C., Elsner, P. & Wiegand, C. Point mutations in the squalene epoxidase erg1 and sterol 14-α demethylase erg11 gene of T indotineae isolates indicate that the resistant mutant strains evolved independently. Mycoses 65, 97–102 (2022).

Article CAS PubMed Google Scholar

Yamada, T. et al. Gene amplification of CYP51B: a new mechanism of resistance to azole compounds in Trichophyton indotineae. Antimicrob. Agents Chemother. 66, e0005922 (2022).

Article PubMed Google Scholar

Singh, A. et al. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: genomic insights and resistance profile. Fungal Genet. Biol. 133, 103266 (2019).

Article CAS PubMed Google Scholar

van Zuuren, E. J., Fedorowicz, Z. & El-Gohary, M. Evidence-based topical treatments for tinea cruris and tinea corporis: a summary of a Cochrane Systematic Review. Br. J. Dermatol. 172, 616–641 (2015).

Article PubMed Google Scholar

Singh, S. K., Subba, N. & Tilak, R. Efficacy of terbinafine and itraconazole in different doses and in combination in the treatment of tinea infection: a randomized controlled parallel group open labeled trial with clinico-mycological correlation. Indian J. Dermatol. 65, 284–289 (2020).

Article PubMed PubMed Central Google Scholar

Shaw, D. et al. MIC and upper limit of wild-type distribution for 13 antifungal agents against a Trichophyton mentagrophytes–Trichophyton interdigitale complex of Indian origin. Antimicrob. Agents Chemother. 64, e01964-19 (2020).

Article PubMed PubMed Central Google Scholar

Gueneau, R. et al. Extensive dermatophytosis caused by terbinafine-resistant Trichophyton indotineae, successfully treated with topical voriconazole. Int. J. Antimicrob. Agents 60, 106677 (2022).

Article CAS PubMed Google Scholar

Alexander, B. D. et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 56, 1724–1732 (2013).

Article PubMed PubMed Central Google Scholar

Magobo, R. E., Lockhart, S. R. & Govender, N. P. Fluconazole-resistant Candida parapsilosis strains with a Y132F substitution in the ERG11 gene causing invasive infections in a neonatal unit, South Africa. Mycoses 63, 471–477 (2020).

Article CAS PubMed Google Scholar

Corzo-Leon, D. E., Peacock, M., Rodriguez-Zulueta, P., Salazar-Tamayo, G. J. & MacCallum, D. M. General hospital outbreak of invasive candidiasis due to azole-resistant Candida parapsilosis associated with an Erg11 Y132F mutation. Med. Mycol. 59, 664–671 (2021).

Article CAS PubMed Google Scholar

Alcoceba, E. et al. Fluconazole-resistant Candida parapsilosis clonally related genotypes: first report proving the presence of endemic isolates harbouring the Y132F ERG11 gene substitution in Spain. Clin. Microbiol. Infect. 28, 1113–1119 (2022).

Article CAS PubMed Google Scholar

Arastehfar, A. et al. First report of candidemia clonal outbreak caused by emerging fluconazole-resistant Candida parapsilosis isolates harboring Y132F and/or Y132F+K143R in Turkey. Antimicrob. Agents Chemother. 64, e01001-20 (2020).

Article PubMed PubMed Central Google Scholar

Castanheira, M., Deshpande, L. M., Messer, S. A., Rhomberg, P. R. & Pfaller, M. A. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int. J. Antimicrob. Agents 55, 105799 (2020).

Article CAS PubMed Google Scholar

& Thomaz, D. Y. et al. Environmental clonal spread of azole-resistant Candida parapsilosis with Erg11-Y132F mutation causing a large candidemia outbreak in a Brazilian cancer referral center. J. Fungi 7, 259 (2021).

Article CAS Google Scholar

Zhou, Z. L. et al. Genetic relatedness among azole-resistant Candida tropicalis clinical strains in Taiwan from 2014 to 2018. Int. J. Antimicrob. Agents 59, 106592 (2022).

Article CAS PubMed Google Scholar

Kano, R., Kimura, U., Noguchi, H. & Hiruma, M. Clinical isolate of a multi-antifungal-resistant Trichophyton rubrum. Antimicrob. Agents Chemother. 66, e0239321 (2022).

Article PubMed Google Scholar

Gu, D., Hatch, M., Ghannoum, M. & Elewski, B. E. Treatment-resistant dermatophytosis: a representative case highlighting an emerging public health threat. JAAD Case Rep. 6, 1153–1155 (2020).

Article PubMed PubMed Central Google Scholar

WHO. WHO fungal priority pathogens list. WHO https://www.who.int/publications/i/item/9789240060241 (2023).

Price, C. L., Parker, J. E., Warrilow, A. G., Kelly, D. E. & Kelly, S. L. Azole fungicides — understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag. Sci. 71, 1054–1058 (2015).

Article CAS PubMed Google Scholar

Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).

Article CAS PubMed PubMed Central Google Scholar

Pfaller, M. A., Marco, F., Messer, S. A. & Jones, R. N. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn. Microbiol. Infect. Dis. 30, 251–255 (1998).

Article CAS PubMed Google Scholar

Fera, M. T., La Camera, E. & De Sarro, A. New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev. Anti Infect. Ther. 7, 981–998 (2009).

Article CAS PubMed Google Scholar

Orozco, A. S. et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob. Agents Chemother. 42, 2645–2649 (1998).

Article CAS PubMed PubMed Central Google Scholar

Guinea, J., Sánchez-Somolinos, M., Cuevas, O., Peláez, T. & Bouza, E. Fluconazole resistance mechanisms in Candida krusei: the contribution of efflux-pumps. Med. Mycol. 44, 575–578 (2006).

Article CAS PubMed Google Scholar

Centers for Disease Control and Prevention. 2019 AR Threats Report. US Department of Health and Human Services and CDC https://www.cdc.gov/drugresistance/biggest-threats.html (2019).

Revie, N. M., Iyer, K. R., Robbins, N. & Cowen, L. E. Antifungal drug resistance: evolution, mechanisms and impact. Curr. Opin. Microbiol. 45, 70–76 (2018).

Article CAS PubMed PubMed Central Google Scholar

Whaley, S. G. et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 7, 2173 (2016).

PubMed Google Scholar

Mba, I. E., Nweze, E. I., Eze, E. A. & Anyaegbunam, Z. K. G. Genome plasticity in Candida albicans: a cutting-edge strategy for evolution, adaptation, and survival. Infect. Genet. Evol. 99, 105256 (2022).

Article CAS PubMed Google Scholar

Zafar, H., Altamirano, S., Ballou, E. R. & Nielsen, K. A titanic drug resistance threat in Cryptococcus neoformans. Curr. Opin. Microbiol. 52, 158–164 (2019).

Article CAS PubMed PubMed Central Google Scholar

Singh-Babak, S. D. et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 8, e1002718 (2012).

Article CAS PubMed PubMed Central Google Scholar

Duxbury, S. J. N., Bates, S., Beardmore, R. E. & Gudelj, I. Evolution of drug-resistant and virulent small colonies in phenotypically diverse populations of the human fungal pathogen Candida glabrata. Proc. Biol. Sci. 287, 20200761 (2020).

CAS PubMed PubMed Central Google Scholar

Fan, S., Li, C., Bing, J., Huang, G. & Du, H. Discovery of the diploid form of the emerging fungal pathogen Candida auris. ACS Infect. Dis. 6, 2641–2646 (2020).

Article CAS PubMed Google Scholar

Weil, T. et al. Adaptive mistranslation accelerates the evolution of fluconazole resistance and induces major genomic and gene expression alterations in Candida albicans. mSphere 2, e00167-17 (2017).

Article PubMed PubMed Central Google Scholar

Zhang, H. et al. Global screening of genomic and transcriptomic factors associated with phenotype differences between multidrug-resistant and -susceptible Candida haemulonii strains. mSystems 4, e00459-19 (2019).

Article PubMed PubMed Central Google Scholar

Download references

The authors acknowledge M. McCloskey for her assistance with data collection. A.C. is a fellow of the CIFAR programme Fungal Kingdom: Threats & Opportunities.

Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA

Shawn R. Lockhart & Jeremy A. W. Gold

Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India

Anuradha Chowdhary

National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India

Anuradha Chowdhary

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

The authors contributed equally to all aspects of the article.

Correspondence to Shawn R. Lockhart.

The authors declare no competing interests.

Nature Reviews Microbiology thanks Matthew Fisher, David Perlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Disclaimer The findings and conclusions of this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CDC Infection Prevention and Control for Candida auris : https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html

Centers for Disease Control and Prevention antimicrobial-resistant Aspergillus : https://www.cdc.gov/fungal/diseases/aspergillosis/antifungal-resistant.html

Reprints and Permissions

Lockhart, S.R., Chowdhary, A. & Gold, J.A.W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol (2023). https://doi.org/10.1038/s41579-023-00960-9

Download citation

Accepted: 03 August 2023

Published: 30 August 2023

DOI: https://doi.org/10.1038/s41579-023-00960-9

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative